1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use std::collections::VecDeque;
use std::future::Future;
use std::pin::Pin;
use std::task::Context;
use std::task::Poll;
use futures::poll;
use futures::stream::FuturesOrdered;
use futures::FutureExt;
use futures::StreamExt;
use crate::*;
/// BoxedFuture is the type alias of [`futures::future::BoxFuture`].
///
/// We will switch to [`futures::future::LocalBoxFuture`] on wasm32 target.
#[cfg(not(target_arch = "wasm32"))]
pub type BoxedFuture<'a, T> = futures::future::BoxFuture<'a, T>;
#[cfg(target_arch = "wasm32")]
pub type BoxedFuture<'a, T> = futures::future::LocalBoxFuture<'a, T>;
/// BoxedStaticFuture is the type alias of [`futures::future::BoxFuture`].
///
/// We will switch to [`futures::future::LocalBoxFuture`] on wasm32 target.
#[cfg(not(target_arch = "wasm32"))]
pub type BoxedStaticFuture<T> = futures::future::BoxFuture<'static, T>;
#[cfg(target_arch = "wasm32")]
pub type BoxedStaticFuture<T> = futures::future::LocalBoxFuture<'static, T>;
/// MaybeSend is a marker to determine whether a type is `Send` or not.
/// We use this trait to wrap the `Send` requirement for wasm32 target.
///
/// # Safety
///
/// MaybeSend equivalent to `Send` on non-wasm32 target. And it's empty
/// on wasm32 target.
#[cfg(not(target_arch = "wasm32"))]
pub unsafe trait MaybeSend: Send {}
#[cfg(target_arch = "wasm32")]
pub unsafe trait MaybeSend {}
#[cfg(not(target_arch = "wasm32"))]
unsafe impl<T: Send> MaybeSend for T {}
#[cfg(target_arch = "wasm32")]
unsafe impl<T> MaybeSend for T {}
/// ConcurrentTasks is used to execute tasks concurrently.
///
/// ConcurrentTasks has two generic types:
///
/// - `I` represents the input type of the task.
/// - `O` represents the output type of the task.
pub struct ConcurrentTasks<I, O> {
/// The executor to execute the tasks.
///
/// If user doesn't provide an executor, the tasks will be executed with the default executor.
executor: Executor,
/// The factory to create the task.
///
/// Caller of ConcurrentTasks must provides a factory to create the task for executing.
///
/// The factory must accept an input and return a future that resolves to a tuple of input and
/// output result. If the given result is error, the error will be returned to users and the
/// task will be retried.
factory: fn(I) -> BoxedStaticFuture<(I, Result<O>)>,
/// `tasks` holds the ongoing tasks.
///
/// Please keep in mind that all tasks are running in the background by `Executor`. We only need
/// to poll the tasks to see if they are ready.
///
/// Dropping task without `await` it will cancel the task.
tasks: VecDeque<Task<(I, Result<O>)>>,
/// `results` stores the successful results.
results: VecDeque<O>,
/// hitting the last unrecoverable error.
///
/// If concurrent tasks hit an unrecoverable error, it will stop executing new tasks and return
/// an unrecoverable error to users.
errored: bool,
}
impl<I: Send + 'static, O: Send + 'static> ConcurrentTasks<I, O> {
/// Create a new concurrent tasks with given executor, concurrent and factory.
///
/// The factory is a function pointer that shouldn't capture any context.
pub fn new(
executor: Executor,
concurrent: usize,
factory: fn(I) -> BoxedStaticFuture<(I, Result<O>)>,
) -> Self {
Self {
executor,
factory,
tasks: VecDeque::with_capacity(concurrent),
results: VecDeque::with_capacity(concurrent),
errored: false,
}
}
/// Return true if the tasks are running concurrently.
#[inline]
fn is_concurrent(&self) -> bool {
self.tasks.capacity() > 1
}
/// Clear all tasks and results.
///
/// All ongoing tasks will be canceled.
pub fn clear(&mut self) {
self.tasks.clear();
self.results.clear();
}
/// Check if there are remaining space to push new tasks.
#[inline]
pub fn has_remaining(&self) -> bool {
self.tasks.len() < self.tasks.capacity()
}
/// Chunk if there are remaining results to fetch.
#[inline]
pub fn has_result(&self) -> bool {
!self.results.is_empty()
}
/// Execute the task with given input.
///
/// - Execute the task in the current thread if is not concurrent.
/// - Execute the task in the background if there are available slots.
/// - Await the first task in the queue if there is no available slots.
pub async fn execute(&mut self, input: I) -> Result<()> {
if self.errored {
return Err(Error::new(
ErrorKind::Unexpected,
"concurrent tasks met an unrecoverable error",
));
}
// Short path for non-concurrent case.
if !self.is_concurrent() {
let (_, o) = (self.factory)(input).await;
return match o {
Ok(o) => {
self.results.push_back(o);
Ok(())
}
// We don't need to rebuild the future if it's not concurrent.
Err(err) => Err(err),
};
}
loop {
// Try poll once to see if there is any ready task.
if let Some(task) = self.tasks.front_mut() {
if let Poll::Ready((i, o)) = poll!(task) {
match o {
Ok(o) => {
let _ = self.tasks.pop_front();
self.results.push_back(o)
}
Err(err) => {
// Retry this task if the error is temporary
if err.is_temporary() {
self.tasks
.front_mut()
.expect("tasks must have at least one task")
.replace(self.executor.execute((self.factory)(i)));
} else {
self.clear();
self.errored = true;
}
return Err(err);
}
}
}
}
// Try to push new task if there are available space.
if self.tasks.len() < self.tasks.capacity() {
self.tasks
.push_back(self.executor.execute((self.factory)(input)));
return Ok(());
}
// Wait for the next task to be ready.
let task = self
.tasks
.front_mut()
.expect("tasks must have at least one task");
let (i, o) = task.await;
match o {
Ok(o) => {
let _ = self.tasks.pop_front();
self.results.push_back(o);
continue;
}
Err(err) => {
// Retry this task if the error is temporary
if err.is_temporary() {
self.tasks
.front_mut()
.expect("tasks must have at least one task")
.replace(self.executor.execute((self.factory)(i)));
} else {
self.clear();
self.errored = true;
}
return Err(err);
}
}
}
}
/// Fetch the successful result from the result queue.
pub async fn next(&mut self) -> Option<Result<O>> {
if self.errored {
return Some(Err(Error::new(
ErrorKind::Unexpected,
"concurrent tasks met an unrecoverable error",
)));
}
if let Some(result) = self.results.pop_front() {
return Some(Ok(result));
}
if let Some(task) = self.tasks.front_mut() {
let (i, o) = task.await;
return match o {
Ok(o) => {
let _ = self.tasks.pop_front();
Some(Ok(o))
}
Err(err) => {
// Retry this task if the error is temporary
if err.is_temporary() {
self.tasks
.front_mut()
.expect("tasks must have at least one task")
.replace(self.executor.execute((self.factory)(i)));
} else {
self.clear();
self.errored = true;
}
Some(Err(err))
}
};
}
None
}
}
/// CONCURRENT_LARGE_THRESHOLD is the threshold to determine whether to use
/// [`FuturesOrdered`] or not.
///
/// The value of `8` is picked by random, no strict benchmark is done.
/// Please raise an issue if you found the value is not good enough or you want to configure
/// this value at runtime.
const CONCURRENT_LARGE_THRESHOLD: usize = 8;
/// ConcurrentFutures is a stream that can hold a stream of concurrent futures.
///
/// - the order of the futures is the same.
/// - the number of concurrent futures is limited by concurrent.
/// - optimized for small number of concurrent futures.
/// - zero cost for non-concurrent futures cases (concurrent == 1).
pub struct ConcurrentFutures<F: Future + Unpin> {
tasks: Tasks<F>,
concurrent: usize,
}
/// Tasks is used to hold the entire task queue.
enum Tasks<F: Future + Unpin> {
/// The special case for concurrent == 1.
///
/// It works exactly the same like `Option<Fut>` in a struct.
Once(Option<F>),
/// The special cases for concurrent is small.
///
/// At this case, the cost to loop poll is lower than using `FuturesOrdered`.
///
/// We will replace the future by `TaskResult::Ready` once it's ready to avoid consume it again.
Small(VecDeque<TaskResult<F>>),
/// The general cases for large concurrent.
///
/// We use `FuturesOrdered` to avoid huge amount of poll on futures.
Large(FuturesOrdered<F>),
}
impl<F: Future + Unpin> Unpin for Tasks<F> {}
enum TaskResult<F: Future + Unpin> {
Polling(F),
Ready(F::Output),
}
impl<F> ConcurrentFutures<F>
where
F: Future + Unpin + 'static,
{
/// Create a new ConcurrentFutures by specifying the number of concurrent futures.
pub fn new(concurrent: usize) -> Self {
if (0..2).contains(&concurrent) {
Self {
tasks: Tasks::Once(None),
concurrent,
}
} else if (2..=CONCURRENT_LARGE_THRESHOLD).contains(&concurrent) {
Self {
tasks: Tasks::Small(VecDeque::with_capacity(concurrent)),
concurrent,
}
} else {
Self {
tasks: Tasks::Large(FuturesOrdered::new()),
concurrent,
}
}
}
/// Drop all tasks.
pub fn clear(&mut self) {
match &mut self.tasks {
Tasks::Once(fut) => *fut = None,
Tasks::Small(tasks) => tasks.clear(),
Tasks::Large(tasks) => *tasks = FuturesOrdered::new(),
}
}
/// Return the length of current concurrent futures (both ongoing and ready).
pub fn len(&self) -> usize {
match &self.tasks {
Tasks::Once(fut) => fut.is_some() as usize,
Tasks::Small(v) => v.len(),
Tasks::Large(v) => v.len(),
}
}
/// Return true if there is no futures in the queue.
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Return the number of remaining space to push new futures.
pub fn remaining(&self) -> usize {
self.concurrent - self.len()
}
/// Return true if there is remaining space to push new futures.
pub fn has_remaining(&self) -> bool {
self.remaining() > 0
}
/// Push new future into the end of queue.
pub fn push_back(&mut self, f: F) {
debug_assert!(
self.has_remaining(),
"concurrent futures must have remaining space"
);
match &mut self.tasks {
Tasks::Once(fut) => {
*fut = Some(f);
}
Tasks::Small(v) => v.push_back(TaskResult::Polling(f)),
Tasks::Large(v) => v.push_back(f),
}
}
/// Push new future into the start of queue, this task will be exactly the next to poll.
pub fn push_front(&mut self, f: F) {
debug_assert!(
self.has_remaining(),
"concurrent futures must have remaining space"
);
match &mut self.tasks {
Tasks::Once(fut) => {
*fut = Some(f);
}
Tasks::Small(v) => v.push_front(TaskResult::Polling(f)),
Tasks::Large(v) => v.push_front(f),
}
}
}
impl<F> futures::Stream for ConcurrentFutures<F>
where
F: Future + Unpin + 'static,
{
type Item = F::Output;
fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
match &mut self.get_mut().tasks {
Tasks::Once(fut) => match fut {
Some(x) => x.poll_unpin(cx).map(|v| {
*fut = None;
Some(v)
}),
None => Poll::Ready(None),
},
Tasks::Small(v) => {
// Poll all tasks together.
for task in v.iter_mut() {
if let TaskResult::Polling(f) = task {
match f.poll_unpin(cx) {
Poll::Pending => {}
Poll::Ready(res) => {
// Replace with ready value if this future has been resolved.
*task = TaskResult::Ready(res);
}
}
}
}
// Pick the first one to check.
match v.front_mut() {
// Return pending if the first one is still polling.
Some(TaskResult::Polling(_)) => Poll::Pending,
Some(TaskResult::Ready(_)) => {
let res = v.pop_front().unwrap();
match res {
TaskResult::Polling(_) => unreachable!(),
TaskResult::Ready(res) => Poll::Ready(Some(res)),
}
}
None => Poll::Ready(None),
}
}
Tasks::Large(v) => v.poll_next_unpin(cx),
}
}
}
#[cfg(test)]
mod tests {
use std::task::ready;
use std::time::Duration;
use futures::future::BoxFuture;
use futures::Stream;
use rand::Rng;
use tokio::time::sleep;
use super::*;
struct Lister {
size: usize,
idx: usize,
concurrent: usize,
tasks: ConcurrentFutures<BoxFuture<'static, usize>>,
}
impl Stream for Lister {
type Item = usize;
fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
// Randomly sleep for a while, simulate some io operations that up to 100 microseconds.
let timeout = Duration::from_micros(rand::thread_rng().gen_range(0..100));
let idx = self.idx;
if self.tasks.len() < self.concurrent && self.idx < self.size {
let fut = async move {
tokio::time::sleep(timeout).await;
idx
};
self.idx += 1;
self.tasks.push_back(Box::pin(fut));
}
if let Some(v) = ready!(self.tasks.poll_next_unpin(cx)) {
Poll::Ready(Some(v))
} else {
Poll::Ready(None)
}
}
}
#[tokio::test]
async fn test_concurrent_futures() {
let cases = vec![
("once", 1),
("small", CONCURRENT_LARGE_THRESHOLD - 1),
("large", CONCURRENT_LARGE_THRESHOLD + 1),
];
for (name, concurrent) in cases {
let lister = Lister {
size: 1000,
idx: 0,
concurrent,
tasks: ConcurrentFutures::new(concurrent),
};
let expected: Vec<usize> = (0..1000).collect();
let result: Vec<usize> = lister.collect().await;
assert_eq!(expected, result, "concurrent futures failed: {}", name);
}
}
#[tokio::test]
async fn test_concurrent_tasks() {
let executor = Executor::new();
let mut tasks = ConcurrentTasks::new(executor, 16, |(i, dur)| {
Box::pin(async move {
sleep(dur).await;
// 5% rate to fail.
if rand::thread_rng().gen_range(0..100) > 90 {
return (
(i, dur),
Err(Error::new(ErrorKind::Unexpected, "I'm lucky").set_temporary()),
);
}
((i, dur), Ok(i))
})
});
let mut ans = vec![];
for i in 0..10240 {
// Sleep up to 10ms
let dur = Duration::from_millis(rand::thread_rng().gen_range(0..10));
loop {
let res = tasks.execute((i, dur)).await;
if res.is_ok() {
break;
}
}
}
loop {
match tasks.next().await.transpose() {
Ok(Some(i)) => ans.push(i),
Ok(None) => break,
Err(_) => continue,
}
}
assert_eq!(ans, (0..10240).collect::<Vec<_>>())
}
}