1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use std::collections::VecDeque;
use std::future::Future;
use std::pin::Pin;
use std::task::Context;
use std::task::Poll;

use futures::stream::FuturesOrdered;
use futures::FutureExt;
use futures::StreamExt;

/// BoxedFuture is the type alias of [`futures::future::BoxFuture`].
///
/// We will switch to [`futures::future::LocalBoxFuture`] on wasm32 target.
#[cfg(not(target_arch = "wasm32"))]
pub type BoxedFuture<'a, T> = futures::future::BoxFuture<'a, T>;
#[cfg(target_arch = "wasm32")]
pub type BoxedFuture<'a, T> = futures::future::LocalBoxFuture<'a, T>;

/// BoxedStaticFuture is the type alias of [`futures::future::BoxFuture`].
///
/// We will switch to [`futures::future::LocalBoxFuture`] on wasm32 target.
#[cfg(not(target_arch = "wasm32"))]
pub type BoxedStaticFuture<T> = futures::future::BoxFuture<'static, T>;
#[cfg(target_arch = "wasm32")]
pub type BoxedStaticFuture<T> = futures::future::LocalBoxFuture<'static, T>;

/// MaybeSend is a marker to determine whether a type is `Send` or not.
/// We use this trait to wrap the `Send` requirement for wasm32 target.
///
/// # Safety
///
/// MaybeSend equivalent to `Send` on non-wasm32 target. And it's empty
/// on wasm32 target.
#[cfg(not(target_arch = "wasm32"))]
pub unsafe trait MaybeSend: Send {}
#[cfg(target_arch = "wasm32")]
pub unsafe trait MaybeSend {}

#[cfg(not(target_arch = "wasm32"))]
unsafe impl<T: Send> MaybeSend for T {}
#[cfg(target_arch = "wasm32")]
unsafe impl<T> MaybeSend for T {}

/// CONCURRENT_LARGE_THRESHOLD is the threshold to determine whether to use
/// [`FuturesOrdered`] or not.
///
/// The value of `8` is picked by random, no strict benchmark is done.
/// Please raise an issue if you found the value is not good enough or you want to configure
/// this value at runtime.
const CONCURRENT_LARGE_THRESHOLD: usize = 8;

/// ConcurrentFutures is a stream that can hold a stream of concurrent futures.
///
/// - the order of the futures is the same.
/// - the number of concurrent futures is limited by concurrent.
/// - optimized for small number of concurrent futures.
/// - zero cost for non-concurrent futures cases (concurrent == 1).
pub struct ConcurrentFutures<F: Future + Unpin> {
    tasks: Tasks<F>,
    concurrent: usize,
}

/// Tasks is used to hold the entire task queue.
enum Tasks<F: Future + Unpin> {
    /// The special case for concurrent == 1.
    ///
    /// It works exactly the same like `Option<Fut>` in a struct.
    Once(Option<F>),
    /// The special cases for concurrent is small.
    ///
    /// At this case, the cost to loop poll is lower than using `FuturesOrdered`.
    ///
    /// We will replace the future by `TaskResult::Ready` once it's ready to avoid consume it again.
    Small(VecDeque<TaskResult<F>>),
    /// The general cases for large concurrent.
    ///
    /// We use `FuturesOrdered` to avoid huge amount of poll on futures.
    Large(FuturesOrdered<F>),
}

impl<F: Future + Unpin> Unpin for Tasks<F> {}

enum TaskResult<F: Future + Unpin> {
    Polling(F),
    Ready(F::Output),
}

impl<F> ConcurrentFutures<F>
where
    F: Future + Unpin + 'static,
{
    /// Create a new ConcurrentFutures by specifying the number of concurrent futures.
    pub fn new(concurrent: usize) -> Self {
        if (0..2).contains(&concurrent) {
            Self {
                tasks: Tasks::Once(None),
                concurrent,
            }
        } else if (2..=CONCURRENT_LARGE_THRESHOLD).contains(&concurrent) {
            Self {
                tasks: Tasks::Small(VecDeque::with_capacity(concurrent)),
                concurrent,
            }
        } else {
            Self {
                tasks: Tasks::Large(FuturesOrdered::new()),
                concurrent,
            }
        }
    }

    /// Drop all tasks.
    pub fn clear(&mut self) {
        match &mut self.tasks {
            Tasks::Once(fut) => *fut = None,
            Tasks::Small(tasks) => tasks.clear(),
            Tasks::Large(tasks) => *tasks = FuturesOrdered::new(),
        }
    }

    /// Return the length of current concurrent futures (both ongoing and ready).
    pub fn len(&self) -> usize {
        match &self.tasks {
            Tasks::Once(fut) => fut.is_some() as usize,
            Tasks::Small(v) => v.len(),
            Tasks::Large(v) => v.len(),
        }
    }

    /// Return true if there is no futures in the queue.
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Return the number of remaining space to push new futures.
    pub fn remaining(&self) -> usize {
        self.concurrent - self.len()
    }

    /// Return true if there is remaining space to push new futures.
    pub fn has_remaining(&self) -> bool {
        self.remaining() > 0
    }

    /// Push new future into the end of queue.
    pub fn push_back(&mut self, f: F) {
        debug_assert!(
            self.has_remaining(),
            "concurrent futures must have remaining space"
        );

        match &mut self.tasks {
            Tasks::Once(fut) => {
                *fut = Some(f);
            }
            Tasks::Small(v) => v.push_back(TaskResult::Polling(f)),
            Tasks::Large(v) => v.push_back(f),
        }
    }

    /// Push new future into the start of queue, this task will be exactly the next to poll.
    pub fn push_front(&mut self, f: F) {
        debug_assert!(
            self.has_remaining(),
            "concurrent futures must have remaining space"
        );

        match &mut self.tasks {
            Tasks::Once(fut) => {
                *fut = Some(f);
            }
            Tasks::Small(v) => v.push_front(TaskResult::Polling(f)),
            Tasks::Large(v) => v.push_front(f),
        }
    }
}

impl<F> futures::Stream for ConcurrentFutures<F>
where
    F: Future + Unpin + 'static,
{
    type Item = F::Output;

    fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        match &mut self.get_mut().tasks {
            Tasks::Once(fut) => match fut {
                Some(x) => x.poll_unpin(cx).map(|v| {
                    *fut = None;
                    Some(v)
                }),
                None => Poll::Ready(None),
            },
            Tasks::Small(v) => {
                // Poll all tasks together.
                for task in v.iter_mut() {
                    if let TaskResult::Polling(f) = task {
                        match f.poll_unpin(cx) {
                            Poll::Pending => {}
                            Poll::Ready(res) => {
                                // Replace with ready value if this future has been resolved.
                                *task = TaskResult::Ready(res);
                            }
                        }
                    }
                }

                // Pick the first one to check.
                match v.front_mut() {
                    // Return pending if the first one is still polling.
                    Some(TaskResult::Polling(_)) => Poll::Pending,
                    Some(TaskResult::Ready(_)) => {
                        let res = v.pop_front().unwrap();
                        match res {
                            TaskResult::Polling(_) => unreachable!(),
                            TaskResult::Ready(res) => Poll::Ready(Some(res)),
                        }
                    }
                    None => Poll::Ready(None),
                }
            }
            Tasks::Large(v) => v.poll_next_unpin(cx),
        }
    }
}

#[cfg(test)]
mod tests {
    use std::task::ready;
    use std::time::Duration;

    use futures::future::BoxFuture;
    use futures::Stream;
    use rand::Rng;

    use super::*;

    struct Lister {
        size: usize,
        idx: usize,
        concurrent: usize,
        tasks: ConcurrentFutures<BoxFuture<'static, usize>>,
    }

    impl Stream for Lister {
        type Item = usize;

        fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
            // Randomly sleep for a while, simulate some io operations that up to 100 microseconds.
            let timeout = Duration::from_micros(rand::thread_rng().gen_range(0..100));
            let idx = self.idx;
            if self.tasks.len() < self.concurrent && self.idx < self.size {
                let fut = async move {
                    tokio::time::sleep(timeout).await;
                    idx
                };
                self.idx += 1;
                self.tasks.push_back(Box::pin(fut));
            }

            if let Some(v) = ready!(self.tasks.poll_next_unpin(cx)) {
                Poll::Ready(Some(v))
            } else {
                Poll::Ready(None)
            }
        }
    }

    #[tokio::test]
    async fn test_concurrent_futures() {
        let cases = vec![
            ("once", 1),
            ("small", CONCURRENT_LARGE_THRESHOLD - 1),
            ("large", CONCURRENT_LARGE_THRESHOLD + 1),
        ];

        for (name, concurrent) in cases {
            let lister = Lister {
                size: 1000,
                idx: 0,
                concurrent,
                tasks: ConcurrentFutures::new(concurrent),
            };
            let expected: Vec<usize> = (0..1000).collect();
            let result: Vec<usize> = lister.collect().await;

            assert_eq!(expected, result, "concurrent futures failed: {}", name);
        }
    }
}