1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use std::sync::Arc;

use futures::select;
use futures::Future;
use futures::FutureExt;
use futures::TryFutureExt;
use uuid::Uuid;

use crate::raw::*;
use crate::*;

/// BlockWrite is used to implement [`oio::Write`] based on block
/// uploads. By implementing BlockWrite, services don't need to
/// care about the details of uploading blocks.
///
/// # Architecture
///
/// The architecture after adopting [`BlockWrite`]:
///
/// - Services impl `BlockWrite`
/// - `BlockWriter` impl `Write`
/// - Expose `BlockWriter` as `Accessor::Writer`
///
/// # Notes
///
/// `BlockWrite` has an oneshot optimization when `write` has been called only once:
///
/// ```no_build
/// w.write(bs).await?;
/// w.close().await?;
/// ```
///
/// We will use `write_once` instead of starting a new block upload.
///
/// # Requirements
///
/// Services that implement `BlockWrite` must fulfill the following requirements:
///
/// - Must be a http service that could accept `AsyncBody`.
/// - Don't need initialization before writing.
/// - Block ID is generated by caller `BlockWrite` instead of services.
/// - Complete block by an ordered block id list.
pub trait BlockWrite: Send + Sync + Unpin + 'static {
    /// write_once is used to write the data to underlying storage at once.
    ///
    /// BlockWriter will call this API when:
    ///
    /// - All the data has been written to the buffer and we can perform the upload at once.
    fn write_once(&self, size: u64, body: Buffer) -> impl Future<Output = Result<()>> + MaybeSend;

    /// write_block will write a block of the data.
    ///
    /// BlockWriter will call this API and stores the result in
    /// order.
    ///
    /// - block_id is the id of the block.
    fn write_block(
        &self,
        block_id: Uuid,
        size: u64,
        body: Buffer,
    ) -> impl Future<Output = Result<()>> + MaybeSend;

    /// complete_block will complete the block upload to build the final
    /// file.
    fn complete_block(&self, block_ids: Vec<Uuid>) -> impl Future<Output = Result<()>> + MaybeSend;

    /// abort_block will cancel the block upload and purge all data.
    fn abort_block(&self, block_ids: Vec<Uuid>) -> impl Future<Output = Result<()>> + MaybeSend;
}

struct WriteInput<W: BlockWrite> {
    w: Arc<W>,
    executor: Executor,
    block_id: Uuid,
    bytes: Buffer,
}

/// BlockWriter will implements [`oio::Write`] based on block
/// uploads.
pub struct BlockWriter<W: BlockWrite> {
    w: Arc<W>,
    executor: Executor,

    started: bool,
    block_ids: Vec<Uuid>,
    cache: Option<Buffer>,
    tasks: ConcurrentTasks<WriteInput<W>, Uuid>,
}

impl<W: BlockWrite> BlockWriter<W> {
    /// Create a new BlockWriter.
    pub fn new(inner: W, executor: Option<Executor>, concurrent: usize) -> Self {
        let executor = executor.unwrap_or_default();

        Self {
            w: Arc::new(inner),
            executor: executor.clone(),
            started: false,
            block_ids: Vec::new(),
            cache: None,

            tasks: ConcurrentTasks::new(executor, concurrent, |input| {
                Box::pin(async move {
                    let fut = input
                        .w
                        .write_block(
                            input.block_id,
                            input.bytes.len() as u64,
                            input.bytes.clone(),
                        )
                        .map_ok(|_| input.block_id);
                    match input.executor.timeout() {
                        None => {
                            let result = fut.await;
                            (input, result)
                        }
                        Some(timeout) => {
                            let result = select! {
                                result = fut.fuse() => {
                                    result
                                }
                                _ = timeout.fuse() => {
                                      Err(Error::new(
                                            ErrorKind::Unexpected, "write block timeout")
                                                .with_context("block_id", input.block_id.to_string())
                                                .set_temporary())
                                }
                            };
                            (input, result)
                        }
                    }
                })
            }),
        }
    }

    fn fill_cache(&mut self, bs: Buffer) -> usize {
        let size = bs.len();
        assert!(self.cache.is_none());
        self.cache = Some(bs);
        size
    }
}

impl<W> oio::Write for BlockWriter<W>
where
    W: BlockWrite,
{
    async fn write(&mut self, bs: Buffer) -> Result<()> {
        if !self.started && self.cache.is_none() {
            self.fill_cache(bs);
            return Ok(());
        }

        // The block upload process has been started.
        self.started = true;

        let bytes = self.cache.clone().expect("pending write must exist");
        self.tasks
            .execute(WriteInput {
                w: self.w.clone(),
                executor: self.executor.clone(),
                block_id: Uuid::new_v4(),
                bytes,
            })
            .await?;
        self.cache = None;
        self.fill_cache(bs);
        Ok(())
    }

    async fn close(&mut self) -> Result<()> {
        if !self.started {
            let (size, body) = match self.cache.clone() {
                Some(cache) => (cache.len(), cache),
                None => (0, Buffer::new()),
            };

            self.w.write_once(size as u64, body).await?;
            self.cache = None;
            return Ok(());
        }

        if let Some(cache) = self.cache.clone() {
            self.tasks
                .execute(WriteInput {
                    w: self.w.clone(),
                    executor: self.executor.clone(),
                    block_id: Uuid::new_v4(),
                    bytes: cache,
                })
                .await?;
            self.cache = None;
        }

        loop {
            let Some(result) = self.tasks.next().await.transpose()? else {
                break;
            };
            self.block_ids.push(result);
        }

        let block_ids = self.block_ids.clone();
        self.w.complete_block(block_ids).await
    }

    async fn abort(&mut self) -> Result<()> {
        if !self.started {
            return Ok(());
        }

        self.tasks.clear();
        self.cache = None;
        self.w.abort_block(self.block_ids.clone()).await?;
        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use std::collections::HashMap;
    use std::sync::Mutex;
    use std::time::Duration;

    use pretty_assertions::assert_eq;
    use rand::thread_rng;
    use rand::Rng;
    use rand::RngCore;
    use tokio::time::sleep;

    use super::*;
    use crate::raw::oio::Write;

    struct TestWrite {
        length: u64,
        bytes: HashMap<Uuid, Buffer>,
        content: Option<Buffer>,
    }

    impl TestWrite {
        pub fn new() -> Arc<Mutex<Self>> {
            let v = Self {
                length: 0,
                bytes: HashMap::new(),
                content: None,
            };

            Arc::new(Mutex::new(v))
        }
    }

    impl BlockWrite for Arc<Mutex<TestWrite>> {
        async fn write_once(&self, _: u64, _: Buffer) -> Result<()> {
            Ok(())
        }

        async fn write_block(&self, block_id: Uuid, size: u64, body: Buffer) -> Result<()> {
            // Add an async sleep here to enforce some pending.
            sleep(Duration::from_millis(50)).await;

            // We will have 10% percent rate for write part to fail.
            if thread_rng().gen_bool(1.0 / 10.0) {
                return Err(
                    Error::new(ErrorKind::Unexpected, "I'm a crazy monkey!").set_temporary()
                );
            }

            let mut this = self.lock().unwrap();
            this.length += size;
            this.bytes.insert(block_id, body);

            Ok(())
        }

        async fn complete_block(&self, block_ids: Vec<Uuid>) -> Result<()> {
            let mut this = self.lock().unwrap();
            let mut bs = Vec::new();
            for id in block_ids {
                bs.push(this.bytes[&id].clone());
            }
            this.content = Some(bs.into_iter().flatten().collect());

            Ok(())
        }

        async fn abort_block(&self, _: Vec<Uuid>) -> Result<()> {
            Ok(())
        }
    }

    #[tokio::test]
    async fn test_block_writer_with_concurrent_errors() {
        let mut rng = thread_rng();

        let mut w = BlockWriter::new(TestWrite::new(), Some(Executor::new()), 8);
        let mut total_size = 0u64;
        let mut expected_content = Vec::new();

        for _ in 0..1000 {
            let size = rng.gen_range(1..1024);
            total_size += size as u64;

            let mut bs = vec![0; size];
            rng.fill_bytes(&mut bs);

            expected_content.extend_from_slice(&bs);

            loop {
                match w.write(bs.clone().into()).await {
                    Ok(_) => break,
                    Err(_) => continue,
                }
            }
        }

        loop {
            match w.close().await {
                Ok(_) => break,
                Err(_) => continue,
            }
        }

        let inner = w.w.lock().unwrap();

        assert_eq!(total_size, inner.length, "length must be the same");
        assert!(inner.content.is_some());
        assert_eq!(
            expected_content,
            inner.content.clone().unwrap().to_bytes(),
            "content must be the same"
        );
    }
}