1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use std::sync::Arc;
use futures::select;
use futures::Future;
use futures::FutureExt;
use futures::TryFutureExt;
use uuid::Uuid;
use crate::raw::*;
use crate::*;
/// BlockWrite is used to implement [`oio::Write`] based on block
/// uploads. By implementing BlockWrite, services don't need to
/// care about the details of uploading blocks.
///
/// # Architecture
///
/// The architecture after adopting [`BlockWrite`]:
///
/// - Services impl `BlockWrite`
/// - `BlockWriter` impl `Write`
/// - Expose `BlockWriter` as `Accessor::Writer`
///
/// # Notes
///
/// `BlockWrite` has an oneshot optimization when `write` has been called only once:
///
/// ```no_build
/// w.write(bs).await?;
/// w.close().await?;
/// ```
///
/// We will use `write_once` instead of starting a new block upload.
///
/// # Requirements
///
/// Services that implement `BlockWrite` must fulfill the following requirements:
///
/// - Must be a http service that could accept `AsyncBody`.
/// - Don't need initialization before writing.
/// - Block ID is generated by caller `BlockWrite` instead of services.
/// - Complete block by an ordered block id list.
pub trait BlockWrite: Send + Sync + Unpin + 'static {
/// write_once is used to write the data to underlying storage at once.
///
/// BlockWriter will call this API when:
///
/// - All the data has been written to the buffer and we can perform the upload at once.
fn write_once(&self, size: u64, body: Buffer) -> impl Future<Output = Result<()>> + MaybeSend;
/// write_block will write a block of the data.
///
/// BlockWriter will call this API and stores the result in
/// order.
///
/// - block_id is the id of the block.
fn write_block(
&self,
block_id: Uuid,
size: u64,
body: Buffer,
) -> impl Future<Output = Result<()>> + MaybeSend;
/// complete_block will complete the block upload to build the final
/// file.
fn complete_block(&self, block_ids: Vec<Uuid>) -> impl Future<Output = Result<()>> + MaybeSend;
/// abort_block will cancel the block upload and purge all data.
fn abort_block(&self, block_ids: Vec<Uuid>) -> impl Future<Output = Result<()>> + MaybeSend;
}
struct WriteInput<W: BlockWrite> {
w: Arc<W>,
executor: Executor,
block_id: Uuid,
bytes: Buffer,
}
/// BlockWriter will implements [`oio::Write`] based on block
/// uploads.
pub struct BlockWriter<W: BlockWrite> {
w: Arc<W>,
executor: Executor,
started: bool,
block_ids: Vec<Uuid>,
cache: Option<Buffer>,
tasks: ConcurrentTasks<WriteInput<W>, Uuid>,
}
impl<W: BlockWrite> BlockWriter<W> {
/// Create a new BlockWriter.
pub fn new(inner: W, executor: Option<Executor>, concurrent: usize) -> Self {
let executor = executor.unwrap_or_default();
Self {
w: Arc::new(inner),
executor: executor.clone(),
started: false,
block_ids: Vec::new(),
cache: None,
tasks: ConcurrentTasks::new(executor, concurrent, |input| {
Box::pin(async move {
let fut = input
.w
.write_block(
input.block_id,
input.bytes.len() as u64,
input.bytes.clone(),
)
.map_ok(|_| input.block_id);
match input.executor.timeout() {
None => {
let result = fut.await;
(input, result)
}
Some(timeout) => {
let result = select! {
result = fut.fuse() => {
result
}
_ = timeout.fuse() => {
Err(Error::new(
ErrorKind::Unexpected, "write block timeout")
.with_context("block_id", input.block_id.to_string())
.set_temporary())
}
};
(input, result)
}
}
})
}),
}
}
fn fill_cache(&mut self, bs: Buffer) -> usize {
let size = bs.len();
assert!(self.cache.is_none());
self.cache = Some(bs);
size
}
}
impl<W> oio::Write for BlockWriter<W>
where
W: BlockWrite,
{
async fn write(&mut self, bs: Buffer) -> Result<()> {
if !self.started && self.cache.is_none() {
self.fill_cache(bs);
return Ok(());
}
// The block upload process has been started.
self.started = true;
let bytes = self.cache.clone().expect("pending write must exist");
self.tasks
.execute(WriteInput {
w: self.w.clone(),
executor: self.executor.clone(),
block_id: Uuid::new_v4(),
bytes,
})
.await?;
self.cache = None;
self.fill_cache(bs);
Ok(())
}
async fn close(&mut self) -> Result<()> {
if !self.started {
let (size, body) = match self.cache.clone() {
Some(cache) => (cache.len(), cache),
None => (0, Buffer::new()),
};
self.w.write_once(size as u64, body).await?;
self.cache = None;
return Ok(());
}
if let Some(cache) = self.cache.clone() {
self.tasks
.execute(WriteInput {
w: self.w.clone(),
executor: self.executor.clone(),
block_id: Uuid::new_v4(),
bytes: cache,
})
.await?;
self.cache = None;
}
loop {
let Some(result) = self.tasks.next().await.transpose()? else {
break;
};
self.block_ids.push(result);
}
let block_ids = self.block_ids.clone();
self.w.complete_block(block_ids).await
}
async fn abort(&mut self) -> Result<()> {
if !self.started {
return Ok(());
}
self.tasks.clear();
self.cache = None;
self.w.abort_block(self.block_ids.clone()).await?;
Ok(())
}
}
#[cfg(test)]
mod tests {
use std::collections::HashMap;
use std::sync::Mutex;
use std::time::Duration;
use pretty_assertions::assert_eq;
use rand::thread_rng;
use rand::Rng;
use rand::RngCore;
use tokio::time::sleep;
use super::*;
use crate::raw::oio::Write;
struct TestWrite {
length: u64,
bytes: HashMap<Uuid, Buffer>,
content: Option<Buffer>,
}
impl TestWrite {
pub fn new() -> Arc<Mutex<Self>> {
let v = Self {
length: 0,
bytes: HashMap::new(),
content: None,
};
Arc::new(Mutex::new(v))
}
}
impl BlockWrite for Arc<Mutex<TestWrite>> {
async fn write_once(&self, _: u64, _: Buffer) -> Result<()> {
Ok(())
}
async fn write_block(&self, block_id: Uuid, size: u64, body: Buffer) -> Result<()> {
// Add an async sleep here to enforce some pending.
sleep(Duration::from_millis(50)).await;
// We will have 10% percent rate for write part to fail.
if thread_rng().gen_bool(1.0 / 10.0) {
return Err(
Error::new(ErrorKind::Unexpected, "I'm a crazy monkey!").set_temporary()
);
}
let mut this = self.lock().unwrap();
this.length += size;
this.bytes.insert(block_id, body);
Ok(())
}
async fn complete_block(&self, block_ids: Vec<Uuid>) -> Result<()> {
let mut this = self.lock().unwrap();
let mut bs = Vec::new();
for id in block_ids {
bs.push(this.bytes[&id].clone());
}
this.content = Some(bs.into_iter().flatten().collect());
Ok(())
}
async fn abort_block(&self, _: Vec<Uuid>) -> Result<()> {
Ok(())
}
}
#[tokio::test]
async fn test_block_writer_with_concurrent_errors() {
let mut rng = thread_rng();
let mut w = BlockWriter::new(TestWrite::new(), Some(Executor::new()), 8);
let mut total_size = 0u64;
let mut expected_content = Vec::new();
for _ in 0..1000 {
let size = rng.gen_range(1..1024);
total_size += size as u64;
let mut bs = vec![0; size];
rng.fill_bytes(&mut bs);
expected_content.extend_from_slice(&bs);
loop {
match w.write(bs.clone().into()).await {
Ok(_) => break,
Err(_) => continue,
}
}
}
loop {
match w.close().await {
Ok(_) => break,
Err(_) => continue,
}
}
let inner = w.w.lock().unwrap();
assert_eq!(total_size, inner.length, "length must be the same");
assert!(inner.content.is_some());
assert_eq!(
expected_content,
inner.content.clone().unwrap().to_bytes(),
"content must be the same"
);
}
}