1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use std::sync::Arc;

use futures::select;
use futures::Future;
use futures::FutureExt;

use crate::raw::*;
use crate::*;

/// MultipartWrite is used to implement [`oio::Write`] based on multipart
/// uploads. By implementing MultipartWrite, services don't need to
/// care about the details of uploading parts.
///
/// # Architecture
///
/// The architecture after adopting [`MultipartWrite`]:
///
/// - Services impl `MultipartWrite`
/// - `MultipartWriter` impl `Write`
/// - Expose `MultipartWriter` as `Accessor::Writer`
///
/// # Notes
///
/// `MultipartWrite` has an oneshot optimization when `write` has been called only once:
///
/// ```no_build
/// w.write(bs).await?;
/// w.close().await?;
/// ```
///
/// We will use `write_once` instead of starting a new multipart upload.
///
/// # Requirements
///
/// Services that implement `BlockWrite` must fulfill the following requirements:
///
/// - Must be a http service that could accept `AsyncBody`.
/// - Don't need initialization before writing.
/// - Block ID is generated by caller `BlockWrite` instead of services.
/// - Complete block by an ordered block id list.
pub trait MultipartWrite: Send + Sync + Unpin + 'static {
    /// write_once is used to write the data to underlying storage at once.
    ///
    /// MultipartWriter will call this API when:
    ///
    /// - All the data has been written to the buffer and we can perform the upload at once.
    fn write_once(&self, size: u64, body: Buffer) -> impl Future<Output = Result<()>> + MaybeSend;

    /// initiate_part will call start a multipart upload and return the upload id.
    ///
    /// MultipartWriter will call this when:
    ///
    /// - the total size of data is unknown.
    /// - the total size of data is known, but the size of current write
    ///   is less then the total size.
    fn initiate_part(&self) -> impl Future<Output = Result<String>> + MaybeSend;

    /// write_part will write a part of the data and returns the result
    /// [`MultipartPart`].
    ///
    /// MultipartWriter will call this API and stores the result in
    /// order.
    ///
    /// - part_number is the index of the part, starting from 0.
    fn write_part(
        &self,
        upload_id: &str,
        part_number: usize,
        size: u64,
        body: Buffer,
    ) -> impl Future<Output = Result<MultipartPart>> + MaybeSend;

    /// complete_part will complete the multipart upload to build the final
    /// file.
    fn complete_part(
        &self,
        upload_id: &str,
        parts: &[MultipartPart],
    ) -> impl Future<Output = Result<()>> + MaybeSend;

    /// abort_part will cancel the multipart upload and purge all data.
    fn abort_part(&self, upload_id: &str) -> impl Future<Output = Result<()>> + MaybeSend;
}

/// The result of [`MultipartWrite::write_part`].
///
/// services implement should convert MultipartPart to their own represents.
///
/// - `part_number` is the index of the part, starting from 0.
/// - `etag` is the `ETag` of the part.
/// - `checksum` is the optional checksum of the part.
#[derive(Clone)]
pub struct MultipartPart {
    /// The number of the part, starting from 0.
    pub part_number: usize,
    /// The etag of the part.
    pub etag: String,
    /// The checksum of the part.
    pub checksum: Option<String>,
}

struct WriteInput<W: MultipartWrite> {
    w: Arc<W>,
    executor: Executor,
    upload_id: Arc<String>,
    part_number: usize,
    bytes: Buffer,
}

/// MultipartWriter will implements [`oio::Write`] based on multipart
/// uploads.
pub struct MultipartWriter<W: MultipartWrite> {
    w: Arc<W>,
    executor: Executor,

    upload_id: Option<Arc<String>>,
    parts: Vec<MultipartPart>,
    cache: Option<Buffer>,
    next_part_number: usize,

    tasks: ConcurrentTasks<WriteInput<W>, MultipartPart>,
}

/// # Safety
///
/// wasm32 is a special target that we only have one event-loop for this state.
impl<W: MultipartWrite> MultipartWriter<W> {
    /// Create a new MultipartWriter.
    pub fn new(inner: W, executor: Option<Executor>, concurrent: usize) -> Self {
        let w = Arc::new(inner);
        let executor = executor.unwrap_or_default();
        Self {
            w,
            executor: executor.clone(),
            upload_id: None,
            parts: Vec::new(),
            cache: None,
            next_part_number: 0,

            tasks: ConcurrentTasks::new(executor, concurrent, |input| {
                Box::pin({
                    async move {
                        let fut = input.w.write_part(
                            &input.upload_id,
                            input.part_number,
                            input.bytes.len() as u64,
                            input.bytes.clone(),
                        );
                        match input.executor.timeout() {
                            None => {
                                let result = fut.await;
                                (input, result)
                            }
                            Some(timeout) => {
                                let result = select! {
                                    result = fut.fuse() => {
                                        result
                                    }
                                    _ = timeout.fuse() => {
                                        Err(Error::new(
                                            ErrorKind::Unexpected, "write part timeout")
                                                .with_context("upload_id", input.upload_id.to_string())
                                                .with_context("part_number", input.part_number.to_string())
                                                .set_temporary())
                                    }
                                };
                                (input, result)
                            }
                        }
                    }
                })
            }),
        }
    }

    fn fill_cache(&mut self, bs: Buffer) -> usize {
        let size = bs.len();
        assert!(self.cache.is_none());
        self.cache = Some(bs);
        size
    }
}

impl<W> oio::Write for MultipartWriter<W>
where
    W: MultipartWrite,
{
    async fn write(&mut self, bs: Buffer) -> Result<()> {
        let upload_id = match self.upload_id.clone() {
            Some(v) => v,
            None => {
                // Fill cache with the first write.
                if self.cache.is_none() {
                    self.fill_cache(bs);
                    return Ok(());
                }

                let upload_id = self.w.initiate_part().await?;
                let upload_id = Arc::new(upload_id);
                self.upload_id = Some(upload_id.clone());
                upload_id
            }
        };

        let bytes = self.cache.clone().expect("pending write must exist");
        let part_number = self.next_part_number;

        self.tasks
            .execute(WriteInput {
                w: self.w.clone(),
                executor: self.executor.clone(),
                upload_id: upload_id.clone(),
                part_number,
                bytes,
            })
            .await?;
        self.cache = None;
        self.next_part_number += 1;
        self.fill_cache(bs);
        Ok(())
    }

    async fn close(&mut self) -> Result<()> {
        let upload_id = match self.upload_id.clone() {
            Some(v) => v,
            None => {
                let (size, body) = match self.cache.clone() {
                    Some(cache) => (cache.len(), cache),
                    None => (0, Buffer::new()),
                };
                // Call write_once if there is no upload_id.
                self.w.write_once(size as u64, body).await?;
                self.cache = None;
                return Ok(());
            }
        };

        if let Some(cache) = self.cache.clone() {
            let part_number = self.next_part_number;

            self.tasks
                .execute(WriteInput {
                    w: self.w.clone(),
                    executor: self.executor.clone(),
                    upload_id: upload_id.clone(),
                    part_number,
                    bytes: cache,
                })
                .await?;
            self.cache = None;
            self.next_part_number += 1;
        }

        loop {
            let Some(result) = self.tasks.next().await.transpose()? else {
                break;
            };
            self.parts.push(result)
        }

        if self.parts.len() != self.next_part_number {
            return Err(Error::new(
                ErrorKind::Unexpected,
                "multipart part numbers mismatch, please report bug to opendal",
            )
            .with_context("expected", self.next_part_number)
            .with_context("actual", self.parts.len())
            .with_context("upload_id", upload_id));
        }
        self.w.complete_part(&upload_id, &self.parts).await
    }

    async fn abort(&mut self) -> Result<()> {
        let Some(upload_id) = self.upload_id.clone() else {
            return Ok(());
        };

        self.tasks.clear();
        self.cache = None;
        self.w.abort_part(&upload_id).await?;
        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use std::time::Duration;

    use pretty_assertions::assert_eq;
    use rand::thread_rng;
    use rand::Rng;
    use rand::RngCore;
    use tokio::sync::Mutex;
    use tokio::time::sleep;
    use tokio::time::timeout;

    use super::*;
    use crate::raw::oio::Write;

    struct TestWrite {
        upload_id: String,
        part_numbers: Vec<usize>,
        length: u64,
    }

    impl TestWrite {
        pub fn new() -> Arc<Mutex<Self>> {
            let v = Self {
                upload_id: uuid::Uuid::new_v4().to_string(),
                part_numbers: Vec::new(),
                length: 0,
            };

            Arc::new(Mutex::new(v))
        }
    }

    impl MultipartWrite for Arc<Mutex<TestWrite>> {
        async fn write_once(&self, size: u64, _: Buffer) -> Result<()> {
            self.lock().await.length += size;
            Ok(())
        }

        async fn initiate_part(&self) -> Result<String> {
            let upload_id = self.lock().await.upload_id.clone();
            Ok(upload_id)
        }

        async fn write_part(
            &self,
            upload_id: &str,
            part_number: usize,
            size: u64,
            _: Buffer,
        ) -> Result<MultipartPart> {
            {
                let test = self.lock().await;
                assert_eq!(upload_id, test.upload_id);
            }

            // Add an async sleep here to enforce some pending.
            sleep(Duration::from_nanos(50)).await;

            // We will have 10% percent rate for write part to fail.
            if thread_rng().gen_bool(1.0 / 10.0) {
                return Err(
                    Error::new(ErrorKind::Unexpected, "I'm a crazy monkey!").set_temporary()
                );
            }

            {
                let mut test = self.lock().await;
                test.part_numbers.push(part_number);
                test.length += size;
            }

            Ok(MultipartPart {
                part_number,
                etag: "etag".to_string(),
                checksum: None,
            })
        }

        async fn complete_part(&self, upload_id: &str, parts: &[MultipartPart]) -> Result<()> {
            let test = self.lock().await;
            assert_eq!(upload_id, test.upload_id);
            assert_eq!(parts.len(), test.part_numbers.len());

            Ok(())
        }

        async fn abort_part(&self, upload_id: &str) -> Result<()> {
            let test = self.lock().await;
            assert_eq!(upload_id, test.upload_id);

            Ok(())
        }
    }

    struct TimeoutExecutor {
        exec: Arc<dyn Execute>,
    }

    impl TimeoutExecutor {
        pub fn new() -> Self {
            Self {
                exec: Executor::new().into_inner(),
            }
        }
    }

    impl Execute for TimeoutExecutor {
        fn execute(&self, f: BoxedStaticFuture<()>) {
            self.exec.execute(f)
        }

        fn timeout(&self) -> Option<BoxedStaticFuture<()>> {
            let time = thread_rng().gen_range(0..100);
            Some(Box::pin(tokio::time::sleep(Duration::from_nanos(time))))
        }
    }

    #[tokio::test]
    async fn test_multipart_upload_writer_with_concurrent_errors() {
        let mut rng = thread_rng();

        let mut w = MultipartWriter::new(
            TestWrite::new(),
            Some(Executor::with(TimeoutExecutor::new())),
            200,
        );
        let mut total_size = 0u64;

        for _ in 0..1000 {
            let size = rng.gen_range(1..1024);
            total_size += size as u64;

            let mut bs = vec![0; size];
            rng.fill_bytes(&mut bs);

            loop {
                match timeout(Duration::from_nanos(10), w.write(bs.clone().into())).await {
                    Ok(Ok(_)) => break,
                    Ok(Err(_)) => continue,
                    Err(_) => {
                        continue;
                    }
                }
            }
        }

        loop {
            match timeout(Duration::from_nanos(10), w.close()).await {
                Ok(Ok(_)) => break,
                Ok(Err(_)) => continue,
                Err(_) => {
                    continue;
                }
            }
        }

        let actual_parts: Vec<_> = w.parts.into_iter().map(|v| v.part_number).collect();
        let expected_parts: Vec<_> = (0..1000).collect();
        assert_eq!(actual_parts, expected_parts);

        let actual_size = w.w.lock().await.length;
        assert_eq!(actual_size, total_size);
    }
}