1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use std::mem;
use std::path::PathBuf;
use std::sync::Mutex;
use std::time::Duration;

use flume::Receiver;
use flume::Sender;
use futures::channel::oneshot;
use futures::Future;
use monoio::FusionDriver;
use monoio::RuntimeBuilder;

use crate::raw::*;
use crate::*;

pub const BUFFER_SIZE: usize = 2 * 1024 * 1024; // 2 MiB

/// a boxed function that spawns task in current monoio runtime
type TaskSpawner = Box<dyn FnOnce() + Send>;

#[derive(Debug)]
pub struct MonoiofsCore {
    root: PathBuf,
    /// sender that sends [`TaskSpawner`] to worker threads
    tx: Sender<TaskSpawner>,
    /// join handles of worker threads
    threads: Mutex<Vec<std::thread::JoinHandle<()>>>,
    pub buf_pool: oio::PooledBuf,
}

impl MonoiofsCore {
    pub fn new(root: PathBuf, worker_threads: usize, io_uring_entries: u32) -> Self {
        // Since users use monoiofs in a context of tokio, all monoio
        // operations need to be dispatched to a dedicated thread pool
        // where a monoio runtime runs on each thread. Here we spawn
        // these worker threads.
        let (tx, rx) = flume::unbounded();
        let threads = (0..worker_threads)
            .map(move |i| {
                let rx = rx.clone();
                std::thread::Builder::new()
                    .name(format!("monoiofs-worker-{i}"))
                    .spawn(move || Self::worker_entrypoint(rx, io_uring_entries))
                    .expect("spawn worker thread should success")
            })
            .collect();
        let threads = Mutex::new(threads);

        Self {
            root,
            tx,
            threads,
            buf_pool: oio::PooledBuf::new(16).with_initial_capacity(BUFFER_SIZE),
        }
    }

    pub fn root(&self) -> &PathBuf {
        &self.root
    }

    /// join root and path
    pub fn prepare_path(&self, path: &str) -> PathBuf {
        self.root.join(path.trim_end_matches('/'))
    }

    /// join root and path, create parent dirs
    pub async fn prepare_write_path(&self, path: &str) -> Result<PathBuf> {
        let path = self.prepare_path(path);
        let parent = path
            .parent()
            .ok_or_else(|| {
                Error::new(
                    ErrorKind::Unexpected,
                    "path should have parent but not, it must be malformed",
                )
                .with_context("input", path.to_string_lossy())
            })?
            .to_path_buf();
        self.dispatch(move || monoio::fs::create_dir_all(parent))
            .await
            .map_err(new_std_io_error)?;
        Ok(path)
    }

    /// entrypoint of each worker thread, sets up monoio runtimes and channels
    fn worker_entrypoint(rx: Receiver<TaskSpawner>, io_uring_entries: u32) {
        let mut rt = RuntimeBuilder::<FusionDriver>::new()
            .enable_all()
            .with_entries(io_uring_entries)
            .build()
            .expect("monoio runtime initialize should success");
        // run an infinite loop that receives TaskSpawner and calls
        // them in a context of monoio
        rt.block_on(async {
            while let Ok(spawner) = rx.recv_async().await {
                spawner();
            }
        })
    }

    /// Create a TaskSpawner, send it to the thread pool and wait
    /// for its result. Task panic will propagate.
    pub async fn dispatch<F, Fut, T>(&self, f: F) -> T
    where
        F: FnOnce() -> Fut + 'static + Send,
        Fut: Future<Output = T>,
        T: 'static + Send,
    {
        // oneshot channel to send result back
        let (tx, rx) = oneshot::channel();
        let result = self
            .tx
            .send_async(Box::new(move || {
                // task will be spawned on current thread, task panic
                // will cause current worker thread panic
                monoio::spawn(async move {
                    // discard the result if send failed due to
                    // MonoiofsCore::dispatch cancelled
                    let _ = tx.send(f().await);
                });
            }))
            .await;
        self.unwrap(result);
        self.unwrap(rx.await)
    }

    /// Create a TaskSpawner, send it to the thread pool and spawn the task.
    pub async fn spawn<F, Fut, T>(&self, f: F)
    where
        F: FnOnce() -> Fut + 'static + Send,
        Fut: Future<Output = T> + 'static,
        T: 'static,
    {
        let result = self
            .tx
            .send_async(Box::new(move || {
                // task will be spawned on current thread, task panic
                // will cause current worker thread panic
                monoio::spawn(f());
            }))
            .await;
        self.unwrap(result);
    }

    /// This method always panics. It is called only when at least a
    /// worker thread has panicked or meet a broken rx, which is
    /// unrecoverable. It propagates worker thread's panic if there
    /// is any and panics on normally exited thread.
    pub fn propagate_worker_panic(&self) -> ! {
        let mut guard = self.threads.lock().expect("worker thread has panicked");
        // wait until the panicked thread exits
        std::thread::sleep(Duration::from_millis(100));
        let threads = mem::take(&mut *guard);
        // we don't know which thread panicked, so check them one by one
        for thread in threads {
            if thread.is_finished() {
                // worker thread runs an infinite loop, hence finished
                // thread must have panicked or meet a broken rx.
                match thread.join() {
                    // rx is broken
                    Ok(()) => panic!("worker thread should not exit, tx may be dropped"),
                    // thread has panicked
                    Err(e) => std::panic::resume_unwind(e),
                }
            }
        }
        unreachable!("this method should panic")
    }

    /// Unwrap result if result is Ok, otherwise propagates worker thread's
    /// panic. This method facilitates panic propagation in situation where
    /// Err returned by broken channel indicates that the worker thread has
    /// panicked.
    pub fn unwrap<T, E>(&self, result: Result<T, E>) -> T {
        match result {
            Ok(result) => result,
            Err(_) => self.propagate_worker_panic(),
        }
    }
}

#[cfg(test)]
mod tests {
    use std::sync::Arc;
    use std::time::Duration;

    use futures::channel::mpsc::UnboundedSender;
    use futures::channel::mpsc::{self};
    use futures::StreamExt;

    use super::*;

    fn new_core(worker_threads: usize) -> Arc<MonoiofsCore> {
        Arc::new(MonoiofsCore::new(PathBuf::new(), worker_threads, 1024))
    }

    async fn dispatch_simple(core: Arc<MonoiofsCore>) {
        let result = core.dispatch(|| async { 42 }).await;
        assert_eq!(result, 42);
        let bytes: Vec<u8> = vec![1, 2, 3, 4, 5, 6, 7, 8];
        let bytes_clone = bytes.clone();
        let result = core.dispatch(move || async move { bytes }).await;
        assert_eq!(result, bytes_clone);
    }

    async fn dispatch_concurrent(core: Arc<MonoiofsCore>) {
        let (tx, mut rx) = mpsc::unbounded();

        fn spawn_task(core: Arc<MonoiofsCore>, tx: UnboundedSender<u64>, sleep_millis: u64) {
            tokio::spawn(async move {
                let result = core
                    .dispatch(move || async move {
                        monoio::time::sleep(Duration::from_millis(sleep_millis)).await;
                        sleep_millis
                    })
                    .await;
                assert_eq!(result, sleep_millis);
                tx.unbounded_send(result).unwrap();
            });
        }

        spawn_task(core.clone(), tx.clone(), 200);
        spawn_task(core.clone(), tx.clone(), 20);
        drop(tx);
        let first = rx.next().await;
        let second = rx.next().await;
        let third = rx.next().await;
        assert_eq!(first, Some(20));
        assert_eq!(second, Some(200));
        assert_eq!(third, None);
    }

    async fn dispatch_panic(core: Arc<MonoiofsCore>) {
        core.dispatch(|| async { panic!("BOOM") }).await;
    }

    #[tokio::test]
    async fn test_monoio_single_thread_dispatch() {
        let core = new_core(1);
        assert_eq!(core.threads.lock().unwrap().len(), 1);
        dispatch_simple(core).await;
    }

    #[tokio::test]
    async fn test_monoio_single_thread_dispatch_concurrent() {
        let core = new_core(1);
        dispatch_concurrent(core).await;
    }

    #[tokio::test]
    #[should_panic(expected = "BOOM")]
    async fn test_monoio_single_thread_dispatch_panic() {
        let core = new_core(1);
        dispatch_panic(core).await;
    }

    #[tokio::test]
    async fn test_monoio_multi_thread_dispatch() {
        let core = new_core(4);
        assert_eq!(core.threads.lock().unwrap().len(), 4);
        dispatch_simple(core).await;
    }

    #[tokio::test]
    async fn test_monoio_multi_thread_dispatch_concurrent() {
        let core = new_core(4);
        dispatch_concurrent(core).await;
    }

    #[tokio::test]
    #[should_panic(expected = "BOOM")]
    async fn test_monoio_multi_thread_dispatch_panic() {
        let core = new_core(4);
        dispatch_panic(core).await;
    }
}