1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use std::collections::VecDeque;
use std::convert::Infallible;
use std::fmt::Debug;
use std::fmt::Formatter;
use std::io::IoSlice;
use std::mem;
use std::ops::Bound;
use std::ops::RangeBounds;
use std::pin::Pin;
use std::sync::Arc;
use std::task::Context;
use std::task::Poll;

use bytes::Buf;
use bytes::BufMut;
use bytes::Bytes;
use bytes::BytesMut;
use futures::Stream;

use crate::*;

/// Buffer is a wrapper of contiguous `Bytes` and non-contiguous `[Bytes]`.
///
/// We designed buffer to allow underlying storage to return non-contiguous bytes. For example,
/// http based storage like s3 could generate non-contiguous bytes by stream.
///
/// ## Features
///
/// - [`Buffer`] can be used as [`Buf`], [`Iterator`], [`Stream`] directly.
/// - [`Buffer`] is cheap to clone like [`Bytes`], only update reference count, no allocation.
/// - [`Buffer`] is vectorized write friendly, you can convert it to [`IoSlice`] for vectored write.
///
/// ## Examples
///
/// ### As `Buf`
///
/// `Buffer` implements `Buf` trait:
///
/// ```rust
/// use bytes::Buf;
/// use opendal::Buffer;
/// use serde_json;
///
/// fn test(mut buf: Buffer) -> Vec<String> {
///     serde_json::from_reader(buf.reader()).unwrap()
/// }
/// ```
///
/// ### As Bytes `Iterator`
///
/// `Buffer` implements `Iterator<Item=Bytes>` trait:
///
/// ```rust
/// use bytes::Bytes;
/// use opendal::Buffer;
///
/// fn test(mut buf: Buffer) -> Vec<Bytes> {
///     buf.into_iter().collect()
/// }
/// ```
///
/// ### As Bytes `Stream`
///
/// `Buffer` implements `Stream<Item=Result<Bytes, Infallible>>` trait:
///
/// ```rust
/// use bytes::Bytes;
/// use futures::TryStreamExt;
/// use opendal::Buffer;
///
/// async fn test(mut buf: Buffer) -> Vec<Bytes> {
///     buf.into_iter().try_collect().await.unwrap()
/// }
/// ```
///
/// ### As one contiguous Bytes
///
/// `Buffer` can make contiguous by transform into `Bytes` or `Vec<u8>`.
/// Please keep in mind that this operation involves new allocation and bytes copy, and we can't
/// reuse the same memory region anymore.
///
/// ```rust
/// use bytes::Bytes;
/// use opendal::Buffer;
///
/// fn test_to_vec(buf: Buffer) -> Vec<u8> {
///     buf.to_vec()
/// }
///
/// fn test_to_bytes(buf: Buffer) -> Bytes {
///     buf.to_bytes()
/// }
/// ```
#[derive(Clone)]
pub struct Buffer(Inner);

#[derive(Clone)]
enum Inner {
    Contiguous(Bytes),
    NonContiguous {
        parts: Arc<[Bytes]>,
        size: usize,
        idx: usize,
        offset: usize,
    },
}

impl Debug for Buffer {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        let mut b = f.debug_struct("Buffer");

        match &self.0 {
            Inner::Contiguous(bs) => {
                b.field("type", &"contiguous");
                b.field("size", &bs.len());
            }
            Inner::NonContiguous {
                parts,
                size,
                idx,
                offset,
            } => {
                b.field("type", &"non_contiguous");
                b.field("parts", &parts);
                b.field("size", &size);
                b.field("idx", &idx);
                b.field("offset", &offset);
            }
        }
        b.finish_non_exhaustive()
    }
}

impl Default for Buffer {
    fn default() -> Self {
        Self::new()
    }
}
impl Buffer {
    /// Create a new empty buffer.
    ///
    /// This operation is const and no allocation will be performed.
    #[inline]
    pub const fn new() -> Self {
        Self(Inner::Contiguous(Bytes::new()))
    }

    /// Get the length of the buffer.
    #[inline]
    pub fn len(&self) -> usize {
        match &self.0 {
            Inner::Contiguous(b) => b.remaining(),
            Inner::NonContiguous { size, .. } => *size,
        }
    }

    /// Check if buffer is empty.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Number of [`Bytes`] in [`Buffer`].
    ///
    /// For contiguous buffer, it's always 1. For non-contiguous buffer, it's number of bytes
    /// available for use.
    pub fn count(&self) -> usize {
        match &self.0 {
            Inner::Contiguous(_) => 1,
            Inner::NonContiguous {
                parts,
                idx,
                size,
                offset,
            } => {
                parts
                    .iter()
                    .skip(*idx)
                    .fold((0, size + offset), |(count, size), bytes| {
                        if size == 0 {
                            (count, 0)
                        } else {
                            (count + 1, size.saturating_sub(bytes.len()))
                        }
                    })
                    .0
            }
        }
    }

    /// Get current [`Bytes`].
    pub fn current(&self) -> Bytes {
        match &self.0 {
            Inner::Contiguous(inner) => inner.clone(),
            Inner::NonContiguous {
                parts,
                idx,
                offset,
                size,
            } => {
                let chunk = &parts[*idx];
                let n = (chunk.len() - *offset).min(*size);
                chunk.slice(*offset..*offset + n)
            }
        }
    }

    /// Shortens the buffer, keeping the first `len` bytes and dropping the rest.
    ///
    /// If `len` is greater than the buffer’s current length, this has no effect.
    #[inline]
    pub fn truncate(&mut self, len: usize) {
        match &mut self.0 {
            Inner::Contiguous(bs) => bs.truncate(len),
            Inner::NonContiguous { size, .. } => {
                *size = (*size).min(len);
            }
        }
    }

    /// Returns a slice of self for the provided range.
    ///
    /// This will increment the reference count for the underlying memory and return a new Buffer handle set to the slice.
    ///
    /// This operation is O(1).
    pub fn slice(&self, range: impl RangeBounds<usize>) -> Self {
        let len = self.len();

        let begin = match range.start_bound() {
            Bound::Included(&n) => n,
            Bound::Excluded(&n) => n.checked_add(1).expect("out of range"),
            Bound::Unbounded => 0,
        };

        let end = match range.end_bound() {
            Bound::Included(&n) => n.checked_add(1).expect("out of range"),
            Bound::Excluded(&n) => n,
            Bound::Unbounded => len,
        };

        assert!(
            begin <= end,
            "range start must not be greater than end: {:?} <= {:?}",
            begin,
            end,
        );
        assert!(
            end <= len,
            "range end out of bounds: {:?} <= {:?}",
            end,
            len,
        );

        if end == begin {
            return Buffer::new();
        }

        let mut ret = self.clone();
        ret.truncate(end);
        ret.advance(begin);
        ret
    }

    /// Combine all bytes together into one single [`Bytes`].
    ///
    /// This operation is zero copy if the underlying bytes are contiguous.
    /// Otherwise, it will copy all bytes into one single [`Bytes`].
    /// Please use API from [`Buf`], [`Iterator`] or [`Stream`] whenever possible.
    #[inline]
    pub fn to_bytes(&self) -> Bytes {
        match &self.0 {
            Inner::Contiguous(bytes) => bytes.clone(),
            Inner::NonContiguous { .. } => {
                let mut ret = BytesMut::with_capacity(self.len());
                ret.put(self.clone());
                ret.freeze()
            }
        }
    }

    /// Combine all bytes together into one single [`Vec<u8>`].
    ///
    /// This operation is not zero copy, it will copy all bytes into one single [`Vec<u8>`].
    /// Please use API from [`Buf`], [`Iterator`] or [`Stream`] whenever possible.
    #[inline]
    pub fn to_vec(&self) -> Vec<u8> {
        let mut ret = Vec::with_capacity(self.len());
        ret.put(self.clone());
        ret
    }

    /// Convert buffer into a slice of [`IoSlice`] for vectored write.
    #[inline]
    pub fn to_io_slice(&self) -> Vec<IoSlice<'_>> {
        match &self.0 {
            Inner::Contiguous(bs) => vec![IoSlice::new(bs.chunk())],
            Inner::NonContiguous {
                parts, idx, offset, ..
            } => {
                let mut ret = Vec::with_capacity(parts.len() - *idx);
                let mut new_offset = *offset;
                for part in parts.iter().skip(*idx) {
                    ret.push(IoSlice::new(&part[new_offset..]));
                    new_offset = 0;
                }
                ret
            }
        }
    }
}

impl From<Vec<u8>> for Buffer {
    #[inline]
    fn from(bs: Vec<u8>) -> Self {
        Self(Inner::Contiguous(bs.into()))
    }
}

impl From<Bytes> for Buffer {
    #[inline]
    fn from(bs: Bytes) -> Self {
        Self(Inner::Contiguous(bs))
    }
}

impl From<String> for Buffer {
    #[inline]
    fn from(s: String) -> Self {
        Self(Inner::Contiguous(Bytes::from(s)))
    }
}

impl From<&'static [u8]> for Buffer {
    #[inline]
    fn from(s: &'static [u8]) -> Self {
        Self(Inner::Contiguous(Bytes::from_static(s)))
    }
}

impl From<&'static str> for Buffer {
    #[inline]
    fn from(s: &'static str) -> Self {
        Self(Inner::Contiguous(Bytes::from_static(s.as_bytes())))
    }
}

impl FromIterator<u8> for Buffer {
    #[inline]
    fn from_iter<T: IntoIterator<Item = u8>>(iter: T) -> Self {
        Self(Inner::Contiguous(Bytes::from_iter(iter)))
    }
}

impl From<VecDeque<Bytes>> for Buffer {
    #[inline]
    fn from(bs: VecDeque<Bytes>) -> Self {
        let size = bs.iter().map(Bytes::len).sum();
        Self(Inner::NonContiguous {
            parts: Vec::from(bs).into(),
            size,
            idx: 0,
            offset: 0,
        })
    }
}

impl From<Vec<Bytes>> for Buffer {
    #[inline]
    fn from(bs: Vec<Bytes>) -> Self {
        let size = bs.iter().map(Bytes::len).sum();
        Self(Inner::NonContiguous {
            parts: bs.into(),
            size,
            idx: 0,
            offset: 0,
        })
    }
}

impl From<Arc<[Bytes]>> for Buffer {
    #[inline]
    fn from(bs: Arc<[Bytes]>) -> Self {
        let size = bs.iter().map(Bytes::len).sum();
        Self(Inner::NonContiguous {
            parts: bs,
            size,
            idx: 0,
            offset: 0,
        })
    }
}

impl FromIterator<Bytes> for Buffer {
    #[inline]
    fn from_iter<T: IntoIterator<Item = Bytes>>(iter: T) -> Self {
        let mut size = 0;
        let bs = iter.into_iter().inspect(|v| size += v.len());
        // This operation only needs one allocation from iterator to `Arc<[Bytes]>` instead
        // of iterator -> `Vec<Bytes>` -> `Arc<[Bytes]>`.
        let parts = Arc::from_iter(bs);
        Self(Inner::NonContiguous {
            parts,
            size,
            idx: 0,
            offset: 0,
        })
    }
}

impl Buf for Buffer {
    #[inline]
    fn remaining(&self) -> usize {
        self.len()
    }

    #[inline]
    fn chunk(&self) -> &[u8] {
        match &self.0 {
            Inner::Contiguous(b) => b.chunk(),
            Inner::NonContiguous {
                parts,
                size,
                idx,
                offset,
            } => {
                if *size == 0 {
                    return &[];
                }

                let chunk = &parts[*idx];
                let n = (chunk.len() - *offset).min(*size);
                &parts[*idx][*offset..*offset + n]
            }
        }
    }

    #[inline]
    fn chunks_vectored<'a>(&'a self, dst: &mut [IoSlice<'a>]) -> usize {
        match &self.0 {
            Inner::Contiguous(b) => {
                if dst.is_empty() {
                    return 0;
                }

                dst[0] = IoSlice::new(b.chunk());
                1
            }
            Inner::NonContiguous {
                parts, idx, offset, ..
            } => {
                if dst.is_empty() {
                    return 0;
                }

                let mut new_offset = *offset;
                parts
                    .iter()
                    .skip(*idx)
                    .zip(dst.iter_mut())
                    .map(|(part, dst)| {
                        *dst = IoSlice::new(&part[new_offset..]);
                        new_offset = 0;
                    })
                    .count()
            }
        }
    }

    #[inline]
    fn advance(&mut self, cnt: usize) {
        match &mut self.0 {
            Inner::Contiguous(b) => b.advance(cnt),
            Inner::NonContiguous {
                parts,
                size,
                idx,
                offset,
            } => {
                assert!(
                    cnt <= *size,
                    "cannot advance past {cnt} bytes, only {size} bytes left"
                );

                let mut new_idx = *idx;
                let mut new_offset = *offset;
                let mut remaining_cnt = cnt;
                while remaining_cnt > 0 {
                    let part_len = parts[new_idx].len();
                    let remaining_in_part = part_len - new_offset;

                    if remaining_cnt < remaining_in_part {
                        new_offset += remaining_cnt;
                        break;
                    }

                    remaining_cnt -= remaining_in_part;
                    new_idx += 1;
                    new_offset = 0;
                }

                *idx = new_idx;
                *offset = new_offset;
                *size -= cnt;
            }
        }
    }
}

impl Iterator for Buffer {
    type Item = Bytes;

    fn next(&mut self) -> Option<Self::Item> {
        match &mut self.0 {
            Inner::Contiguous(bs) => {
                if bs.is_empty() {
                    None
                } else {
                    Some(mem::take(bs))
                }
            }
            Inner::NonContiguous {
                parts,
                size,
                idx,
                offset,
            } => {
                if *size == 0 {
                    return None;
                }

                let chunk = &parts[*idx];
                let n = (chunk.len() - *offset).min(*size);
                let buf = chunk.slice(*offset..*offset + n);
                *size -= n;
                *offset += n;

                if *offset == chunk.len() {
                    *idx += 1;
                    *offset = 0;
                }

                Some(buf)
            }
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        match &self.0 {
            Inner::Contiguous(bs) => {
                if bs.is_empty() {
                    (0, Some(0))
                } else {
                    (1, Some(1))
                }
            }
            Inner::NonContiguous { parts, idx, .. } => {
                let remaining = parts.len().saturating_sub(*idx);
                (remaining, Some(remaining))
            }
        }
    }
}

impl Stream for Buffer {
    type Item = Result<Bytes, Infallible>;

    fn poll_next(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        Poll::Ready(self.get_mut().next().map(Ok))
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        Iterator::size_hint(self)
    }
}

#[cfg(test)]
mod tests {
    use pretty_assertions::assert_eq;
    use rand::prelude::*;

    use super::*;

    const EMPTY_SLICE: &[u8] = &[];

    #[test]
    fn test_contiguous_buffer() {
        let mut buf = Buffer::new();

        assert_eq!(buf.remaining(), 0);
        assert_eq!(buf.chunk(), EMPTY_SLICE);
        assert_eq!(buf.next(), None);
    }

    #[test]
    fn test_empty_non_contiguous_buffer() {
        let mut buf = Buffer::from(vec![Bytes::new()]);

        assert_eq!(buf.remaining(), 0);
        assert_eq!(buf.chunk(), EMPTY_SLICE);
        assert_eq!(buf.next(), None);
    }

    #[test]
    fn test_non_contiguous_buffer_with_empty_chunks() {
        let mut buf = Buffer::from(vec![Bytes::from("a")]);

        assert_eq!(buf.remaining(), 1);
        assert_eq!(buf.chunk(), b"a");

        buf.advance(1);

        assert_eq!(buf.remaining(), 0);
        assert_eq!(buf.chunk(), EMPTY_SLICE);
    }

    #[test]
    fn test_non_contiguous_buffer_with_next() {
        let mut buf = Buffer::from(vec![Bytes::from("a")]);

        assert_eq!(buf.remaining(), 1);
        assert_eq!(buf.chunk(), b"a");

        let bs = buf.next();

        assert_eq!(bs, Some(Bytes::from("a")));
        assert_eq!(buf.remaining(), 0);
        assert_eq!(buf.chunk(), EMPTY_SLICE);
    }

    #[test]
    fn test_buffer_advance() {
        let mut buf = Buffer::from(vec![Bytes::from("a"), Bytes::from("b"), Bytes::from("c")]);

        assert_eq!(buf.remaining(), 3);
        assert_eq!(buf.chunk(), b"a");

        buf.advance(1);

        assert_eq!(buf.remaining(), 2);
        assert_eq!(buf.chunk(), b"b");

        buf.advance(1);

        assert_eq!(buf.remaining(), 1);
        assert_eq!(buf.chunk(), b"c");

        buf.advance(1);

        assert_eq!(buf.remaining(), 0);
        assert_eq!(buf.chunk(), EMPTY_SLICE);

        buf.advance(0);

        assert_eq!(buf.remaining(), 0);
        assert_eq!(buf.chunk(), EMPTY_SLICE);
    }

    #[test]
    fn test_buffer_truncate() {
        let mut buf = Buffer::from(vec![Bytes::from("a"), Bytes::from("b"), Bytes::from("c")]);

        assert_eq!(buf.remaining(), 3);
        assert_eq!(buf.chunk(), b"a");

        buf.truncate(100);

        assert_eq!(buf.remaining(), 3);
        assert_eq!(buf.chunk(), b"a");

        buf.truncate(2);

        assert_eq!(buf.remaining(), 2);
        assert_eq!(buf.chunk(), b"a");

        buf.truncate(0);

        assert_eq!(buf.remaining(), 0);
        assert_eq!(buf.chunk(), EMPTY_SLICE);
    }

    /// This setup will return
    ///
    /// - A buffer
    /// - Total size of this buffer.
    /// - Total content of this buffer.
    fn setup_buffer() -> (Buffer, usize, Bytes) {
        let mut rng = thread_rng();

        let bs = (0..100)
            .map(|_| {
                let len = rng.gen_range(1..100);
                let mut buf = vec![0; len];
                rng.fill(&mut buf[..]);
                Bytes::from(buf)
            })
            .collect::<Vec<_>>();

        let total_size = bs.iter().map(|b| b.len()).sum::<usize>();
        let total_content = bs.iter().flatten().copied().collect::<Bytes>();
        let buf = Buffer::from(bs);

        (buf, total_size, total_content)
    }

    #[test]
    fn fuzz_buffer_advance() {
        let mut rng = thread_rng();

        let (mut buf, total_size, total_content) = setup_buffer();
        assert_eq!(buf.remaining(), total_size);
        assert_eq!(buf.to_bytes(), total_content);

        let mut cur = 0;
        // Loop at most 10000 times.
        let mut times = 10000;
        while !buf.is_empty() && times > 0 {
            times -= 1;

            let cnt = rng.gen_range(0..total_size - cur);
            cur += cnt;
            buf.advance(cnt);

            assert_eq!(buf.remaining(), total_size - cur);
            assert_eq!(buf.to_bytes(), total_content.slice(cur..));
        }
    }

    #[test]
    fn fuzz_buffer_iter() {
        let mut rng = thread_rng();

        let (mut buf, total_size, total_content) = setup_buffer();
        assert_eq!(buf.remaining(), total_size);
        assert_eq!(buf.to_bytes(), total_content);

        let mut cur = 0;
        while buf.is_empty() {
            let cnt = rng.gen_range(0..total_size - cur);
            cur += cnt;
            buf.advance(cnt);

            // Before next
            assert_eq!(buf.remaining(), total_size - cur);
            assert_eq!(buf.to_bytes(), total_content.slice(cur..));

            if let Some(bs) = buf.next() {
                assert_eq!(bs, total_content.slice(cur..cur + bs.len()));
                cur += bs.len();
            }

            // After next
            assert_eq!(buf.remaining(), total_size - cur);
            assert_eq!(buf.to_bytes(), total_content.slice(cur..));
        }
    }

    #[test]
    fn fuzz_buffer_truncate() {
        let mut rng = thread_rng();

        let (mut buf, total_size, total_content) = setup_buffer();
        assert_eq!(buf.remaining(), total_size);
        assert_eq!(buf.to_bytes(), total_content);

        let mut cur = 0;
        while buf.is_empty() {
            let cnt = rng.gen_range(0..total_size - cur);
            cur += cnt;
            buf.advance(cnt);

            // Before truncate
            assert_eq!(buf.remaining(), total_size - cur);
            assert_eq!(buf.to_bytes(), total_content.slice(cur..));

            let truncate_size = rng.gen_range(0..total_size - cur);
            buf.truncate(truncate_size);

            // After truncate
            assert_eq!(buf.remaining(), truncate_size);
            assert_eq!(
                buf.to_bytes(),
                total_content.slice(cur..cur + truncate_size)
            );

            // Try next after truncate
            if let Some(bs) = buf.next() {
                assert_eq!(bs, total_content.slice(cur..cur + bs.len()));
                cur += bs.len();
            }

            // After next
            assert_eq!(buf.remaining(), total_size - cur);
            assert_eq!(buf.to_bytes(), total_content.slice(cur..));
        }
    }
}